Constraint Systems

About the Problem from the Last Lab Session

Production Line Scheduling

A small company can produce a number of product types

Every time unit, only a single product unit can be manufactured

The company has received a number of orders

- Each order refers to a single product type
- Each order requires a certain number of product units
- Each order has a deadline, which cannot be exceeded

Some pairs of products (p1, p2) are associated to a setup time:

- After manufacturing a unit of p1, before switching to p2
- We need to wait 1 time unit, or to manufacture another product type

Production Line Scheduling

Goal:

- Model & solve the problem using CP
- Satisfy all constraints
- Minimize the makespan

Let's see our two models, formally presented

A First Possible Model (Model 1)

Model #1

Main idea: variables = manufacturing times of all product units

Parameters:

- \mathbf{n} = number of product units
- d_i = deadline for product unit i
- p_i = product type for unit i
- eoh = safe time horizon (largest deadline)
- $s = \{(p_a, p_b), \dots\}$ = ordered pairs with setups times

A First Possible Model (Model 1)

The full model:

$$\min z = \max \quad s_i$$

$$i=0..n-1$$

$$\sup j \neq s_j \qquad \forall i, j=0..n-1, i < j$$

$$s_i \leq d_i \qquad \forall i=0..n-1$$

$$s_j \neq s_i+1 \qquad \forall i, j: (p_i, p_j) \in S$$

$$s_i \in \{0..eoh\} \qquad \forall i=0..n-1$$

The $s_j \neq s_i + 1$ constraints correspond to the setup times:

- If a setup is needed between unit i and j...
- ...then the two cannot be consecutive

A Second Possible Model (Model 2)

Model #2

Main idea: variables = products to be manufactured at each time point

Parameters:

- = n = number of products
- eoh = safe time horizon (largest deadline)
- $\mathbf{m} = \text{number of orders}$
- $\mathbf{d}_{\mathbf{k}}$ = deadline for order \mathbf{k}
- $\mathbf{p_k}$ = product type for order \mathbf{k}
- $\mathbf{n}_{\mathbf{k}}$ = number of product units for order \mathbf{k}
- $s = \{(p_a, p_b), ...\}$ = ordered pairs with setups times

A Second Possible Model (Model 2)

The full model:

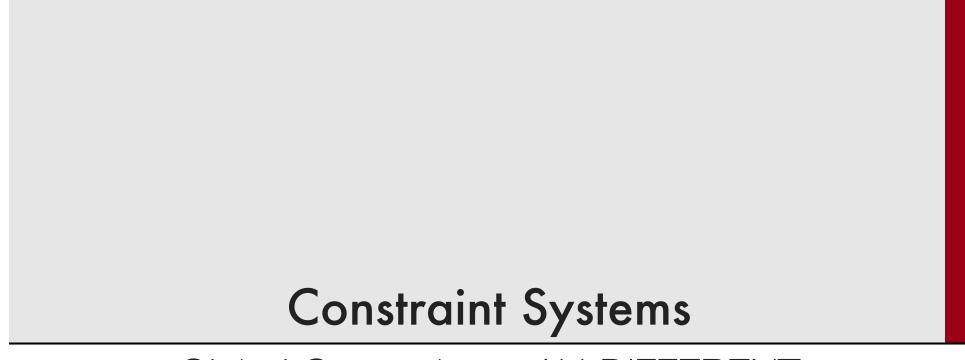
$$\begin{aligned} & \min z = & \max & t \, (x_t \neq -1) \\ & t = 0 \ldots eoh \end{aligned} \\ & \text{subject to:} & \sum & (x_t = p_k) \geq \sum & n_h \\ & t = 0 \ldots d_k & h = 0 \ldots m - 1, \\ & & d_h \leq d_k \end{aligned} \\ & (x_t = p_a) \leq (x_{t+1} \neq p_b) & \forall i, j: (p_a, p_b) \\ & x_t \in \{-1 \ldots n - 1\} & \forall t = 0 \ldots eoh \end{aligned}$$

- -1 is used for idle production times
- Deadlines:
 - lacksquare For each order f k, the sum of units of $f p_k$ produced before $f d_k$...
 - lacktriangle ...Must be greater than all units of lacktriangle needed up to lacktriangle
- Makespan: convert time indices to production times (multiplication)

More About this in the Future

This is not the last we see about this problem

Once of the next lecture will be totally dedicated to it!



Global Constraints - ALLDIFFERENT

	2	
		3
	3	
4		

- Remember this?
- It was one of our very first CSP examples

1 2	1 2	2	1 2
3 4	3 4		3 4
1 2	1 2	1 2	3
3 4	3 4	3 4	
1 2 3 4	1 2 3 4	3	1 2 3 4
1 2 3 4	4	1 2 3 4	1 2 3 4

- These are the initial domains, with one $\mathbf{x_{i,j}}$ variable per cell

1	4	1 3		2	1 4
1	2	1	2	4	3
1	2 4	1	2	3	1 4
3		4	ļ	1	2

- And these are the domains at the GAC fix point
- ...which was an impressive reduction

1	4	1 3		2	1 4
1	2	1	2	4	3
1	2 4	1	2	3	1 4
3		4		1	2

But it could be better!

1 4	1	1 3		2	1 4
1 2	2	1	2	4	3
1 2	2	1	2	3	1 4
3		4		1	2

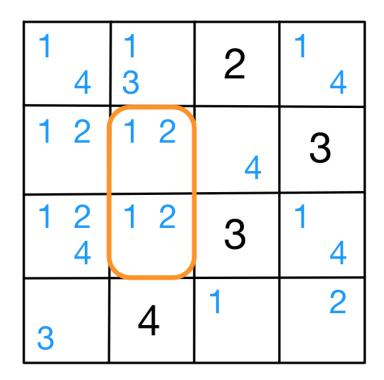
- Consider the two variables $x_{1,1}$ and $x_{2,1}$
- They must take a value in {1, 2}, which has cardinality 2

1 4	1 3	2	1 4
1 2	1 2	4	3
1 2 4	1 2	3	1 4
3	4	1	2

- If we assign 1 or 2 to another variable, the column is infeasible
- Therefore values 1 and 2 must be assigned to them

1	4	3	2	1 4
1	2	1 2	4	3
1	2 4	1 2	3	1 4
3		4	1	2

■ And we can remove value 1 from the domain of $x_{0,1}$!



But the constraints were all GAC!

How did we manage to filter more?

Global vs Local Filtering

Main idea: reasoning on the whole column

- lacktriangle Let the column variables be f x and the union of their domains f v
- The variables on each column must be all different

If we find a a set of values $w \subset v$ and a set of variables $y \subset x$, s.t.:

$$|Y| = |W|$$
 and $D(x_i) \subseteq W$, $\forall x_i \in Y$

Then:

- w is called a Hall set for x
- The values in \mathbf{w} will all be taken by the variables in \mathbf{y}
- We can prune \mathbf{w} from the domains of the other variables

Hall Set Filtering for All Different Variables

Formally, we should have $\forall w \subset V$, $Y \subset X$ with |Y| = |w|:

$$D(x_{j}) \subseteq W$$
, $\forall x_{j} \in Y \Rightarrow D(x_{j}) = D(x_{j}) \setminus W$, $\forall x_{j} \in X \setminus Y$

- This "Hall set filtering" enforces GAC on the whole column
- Hence, it is the best we can achieve for a set of all different variables

Now, we could encode the implications as additional constraints

- The would not be necessary...
- ...But they would still allow more filtering

A constraint with this properties is called redundant

Hall Set Filtering for All Different Variables

Still, we have no luck

Even if we manege to encode this implication as a constraint...

$$D(x_{j}) \subseteq W$$
, $\forall x_{j} \in Y \Rightarrow D(x_{j}) = D(x_{j}) \setminus W$, $\forall x_{j} \in X \setminus Y$

...We should still add one such constraint for...

$$\forall W \subset V, Y \subset X \text{ with } |Y| = |W|$$

And this is bad :-(

- lacktriangle The number of subsets of f v is exponential
- lacktriangle The number of subsets of $oldsymbol{x}$ is exponential

Shall we give up? Let's take a different appraoch instead

Global Alldifferent Constraint

We can introduce a new global constraint:

ALLDIFFERENT(X), where **x** is a vector of variables

- Semantically, it is equivalent to $x_i \neq x_j$, $\forall i \neq j...$
- ...But the filtering algorithm can be written ad hoc...
- ...Using virtually any algorithmic technique

In the case of **ALLDIFFERENT** polynomial GAC propagators do exist

And now we will see one of them...

A Propagator for ALLDIFFERENT

We will see an **ALLDIFFERENT** propagator based on network flows:

- The classical propagator is instead based on graph matchings
- For more details, there is a (excellent) paper on the course web site

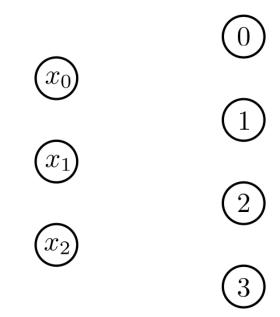
We consider two distinct problems:

- Checking the constraint feasibility
- Performing <u>filtering</u>

We will use this example instance:

ALLDIFFERENT(X), with $x_0 \in \{0, 2\}, x_1 \in \{0, 2\}, x_3 \in \{1, 2, 3\}$

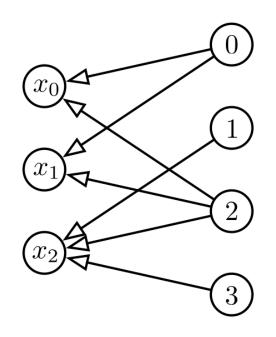
Value Graph



For any constraint, we can define the so-called value graph

- Left-hand nodes = variables
- Right-hand node = values

Value Graph



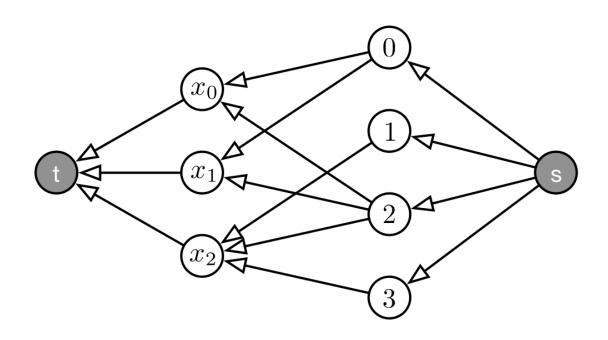
For any constraint, we can define the so-called value graph

- Arcs = possible assignments of values to variables (i.e. the domains)
- The value graph is bipartite (by construction)



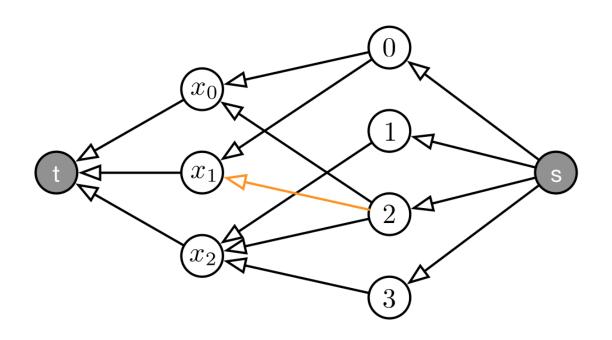
Now, let's add:

- An additional "source" node s, connected to all values
- An additional "sink" node t, to which all vars are connected



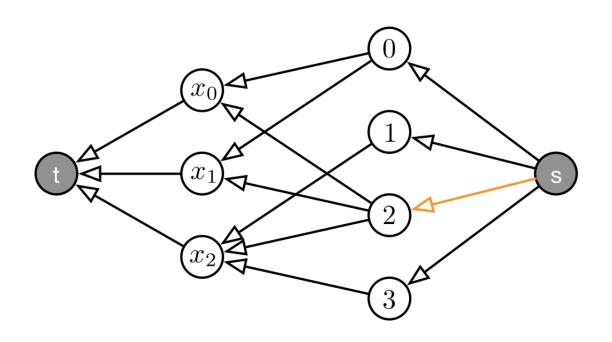
We can view this structure as a "pipe network":

- Each arc is a "tube", with capacity equal to 1
- Flow can originate from s and move toward t



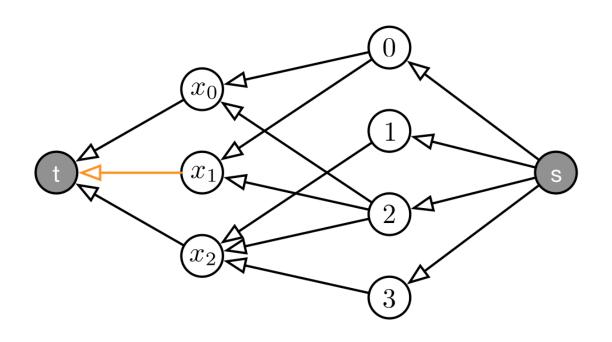
How do we "read" the flow?

- If there is flow on arc $v_j \rightarrow x_i$, then v_j is assigned to x_i
- The capacity is $1 = \mathbf{v_j}$ cannot be assigned twice to the same var



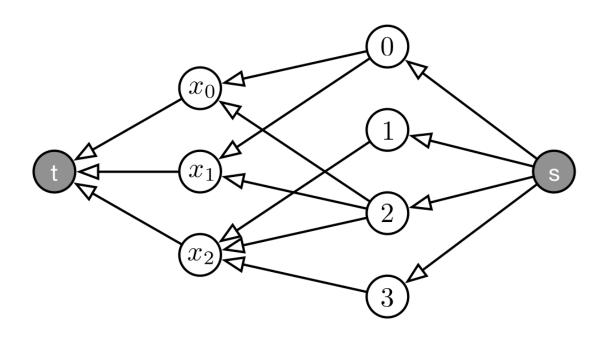
How do we "read" the flow?

- If there is flow on arc $\mathbf{s} \rightarrow \mathbf{v}_{\mathbf{j}}$, then $\mathbf{v}_{\mathbf{j}}$ is used
- The capacity is 1 \Rightarrow each $\mathbf{v}_{\mathbf{j}}$ can be used at most once



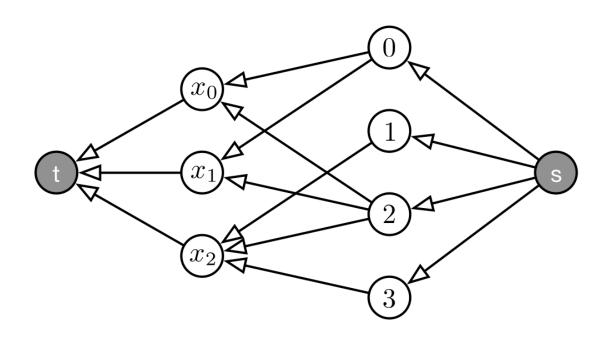
How do we "read" the flow?

- If there is flow on arc $x_i \rightarrow t$, then x_i is assigned
- The capacity is 1 \Rightarrow each x_i can be assigned at most once



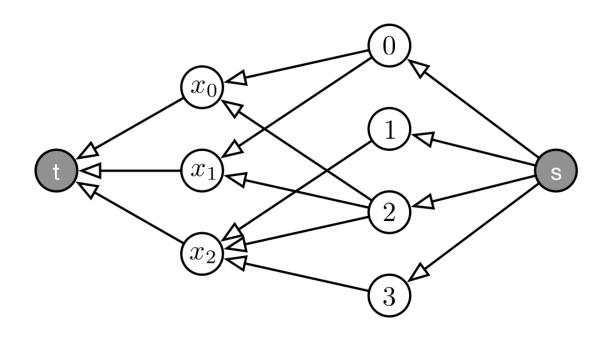
Important consequence:

- A solution exists iff all variables are assigned
- I.e. if there exist a flow with total value equal to | x |



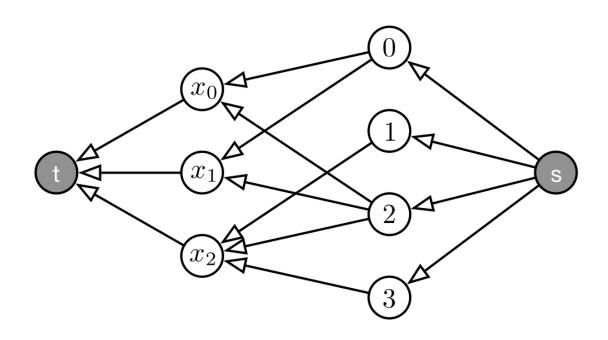
Hence, we have our feasibility check:

- Route the maximum possible flow from s to t
- lacktriangle Check if the total flow value is equal to ${f x}$



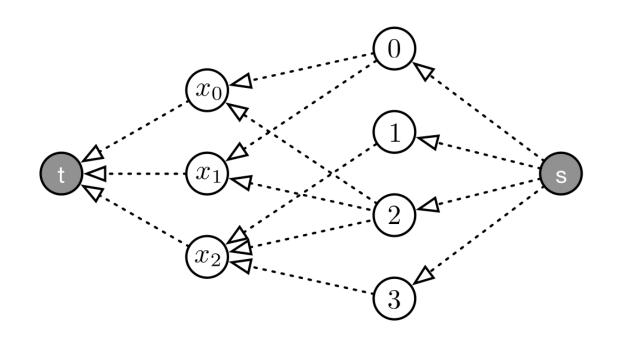
How do we solve this maximum flow problem?

- Several algorithms are available
- We will use a specialization of the Edmonds-Karp algorithm
- In turn, it is specialization of the Ford-Fulkerson method



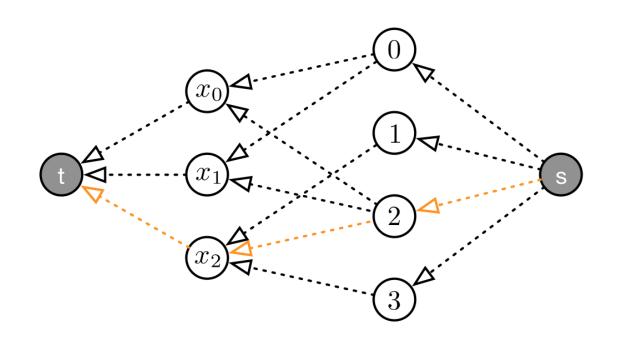
General idea:

- Start from a feasible flow (i.e. all capacities respected)
- Iteratively augment the flow value



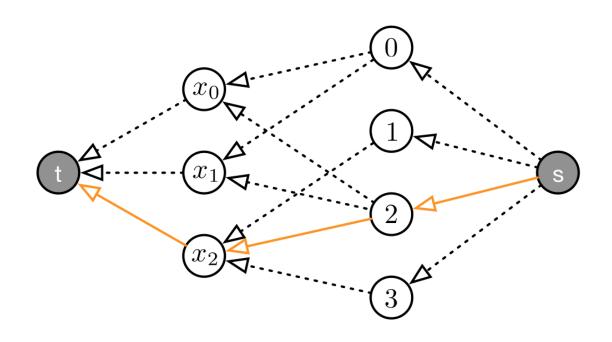
Our (trivial) initial flow:

- The flow $f(a \rightarrow b)$ for all arcs is 0
- Notation: dotted arcs: no flow, solid arcs: f(a → b) = 1



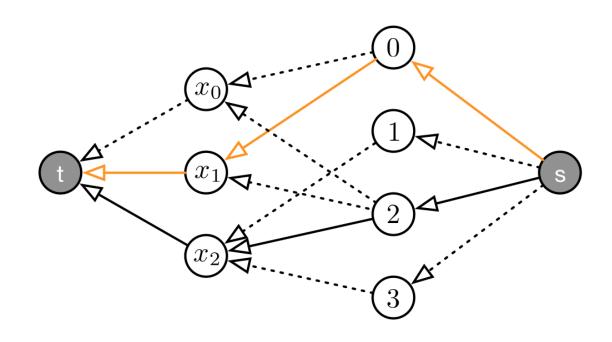
Augmenting the flow value

- Find the shortest s t path...
- ...made of non-saturated arcs (i.e. f(a → b) < 1)</p>



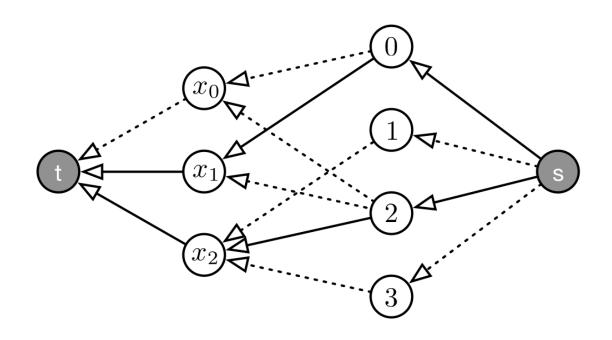
Augmenting the flow value

Route 1 unit of flow along the path



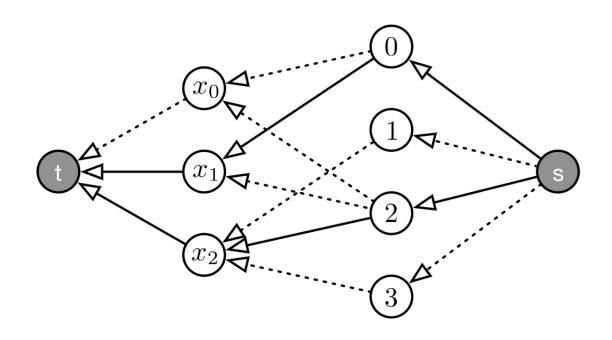
Augmenting the flow value

Repeat the process



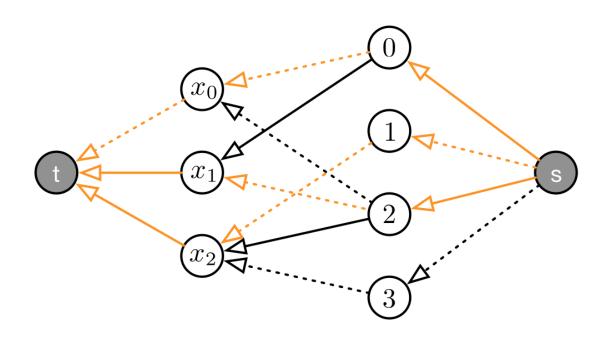
Augmenting the flow value

Until no more paths can be found



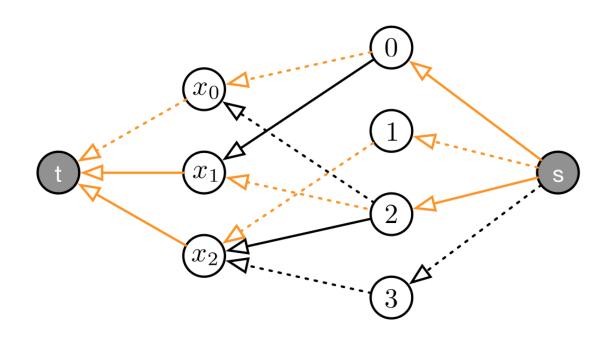
Is that all? No, actually.

- Here it looks like we have reached a dead-end
- The total flow value is 2, which is less than |X|
- Hence, the constraint should be infeasible



But solutions do actually exist!

- For example $x_0 = 0$, $x_1 = 2$, $x_2 = 1$
- Which corresponds to routing flow along the orange arcs



We are missing the ability to "undo" past choices

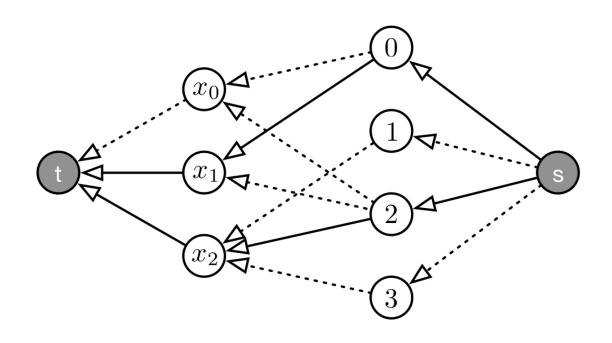
- We could use backtracking, but that is expensive
- Luckily, for flow problems there is a cheaper alternative...

Main idea: we search for paths on a Residual Graph

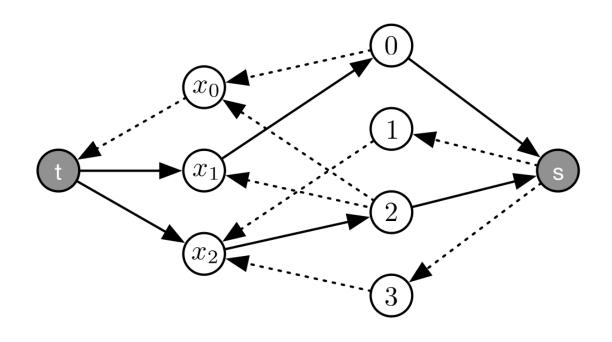
- The residual graph has the same nodes as the original graph
- There is an arc $a \rightarrow b$ in the residual graph iff:
 - The is an arc $a \rightarrow b$ in the original graph and $f(a \rightarrow b) = 0$
 - There is an arc $b \rightarrow a$ in the original graph and $f(b \rightarrow a) = 1$

Intuitively, the residual graph:

- Has an arc $a \rightarrow b$ if we can increase the flow along $a \rightarrow b$
 - I.e. the flow is lower than the capacity (always 1)
- Has an arc $b \rightarrow a$ if we can decrease the flow along $a \rightarrow b$
 - I.e. the flow is non-zero

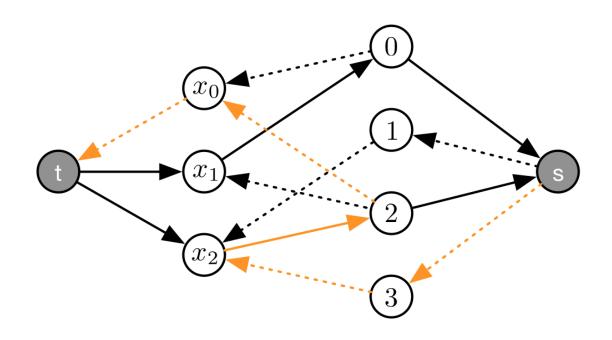


So, given our "dead-end" graph and flow

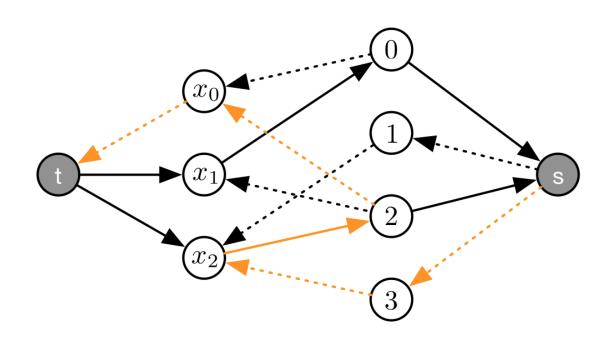


- So, given our "dead-end" graph and flow
- We obtain the following residual graph

Notation: black arrow heads for the residual graph

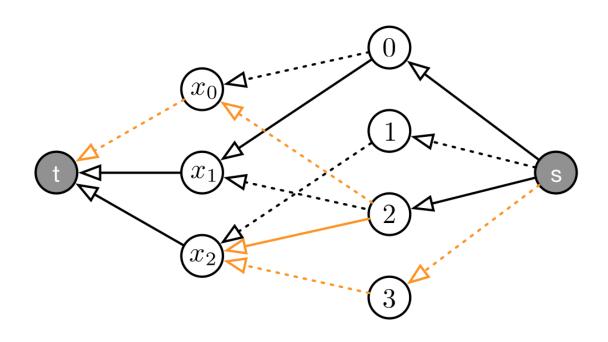


- Our max-flow algorithm stays the same as before
- Except that we look for shortest s t paths on the residual graph



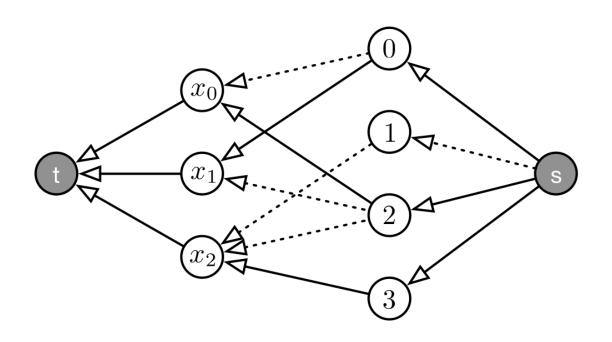
When we route flow along the path we need to:

- Increase flow on forward arcs $(f(a \rightarrow b) = 0)$ in the orig. graph)
- Decrease flow on backward arcs $(f(b \rightarrow a) = 1)$ in the orig. graph)



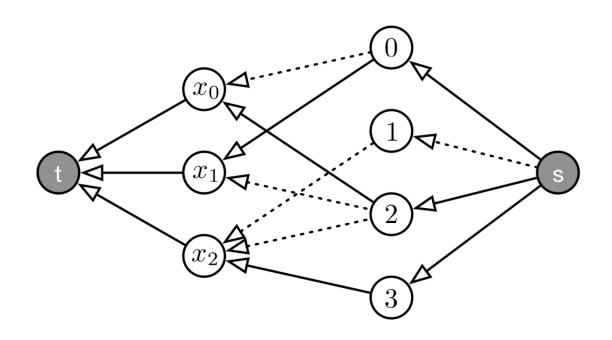
For example:

■ This is our shortest path on the original graph



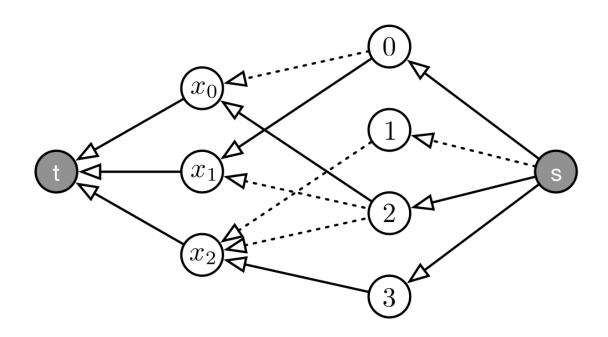
For example:

- This is our shortest path on the original graph
- And this is what we obtain after re-routing flow



The total flow value is |x|, hence the constraint is feasible

- This flow corresponds to a feasible solution!
- I.e. $x_0 = 2$, $x_1 = 0$, $x_2 = 3$ (look at the solid arcs)



- It can be proved that the algorithm finds the maximum possible flow
- Complexity o(#edges) for finding paths via Dijkstra
- #edges = $O\left(\sum_{x_i \in X} |D(x_i)|\right)$

■ At most | x | iterations, hence total complexity

$$O\left(\left|X\right|\sum_{x_{i}\in X}\left|D(x_{i})\right|\right)$$

Consistency Checking for ALLDIFFERENT

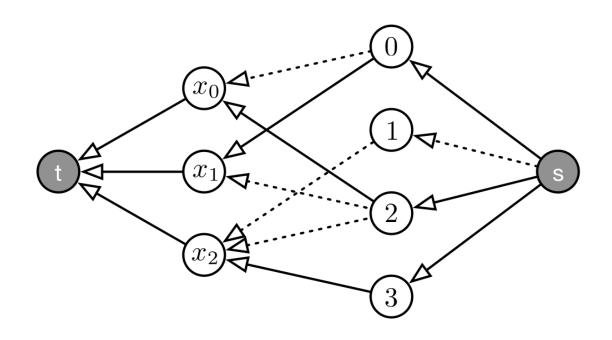
Ok, we have our consistency checker!

- We just need to build the flow graph
- Solve the max flow problem
- lacktriangle Check if the final flow value is $\mid \mathbf{x} \mid$

Side note:

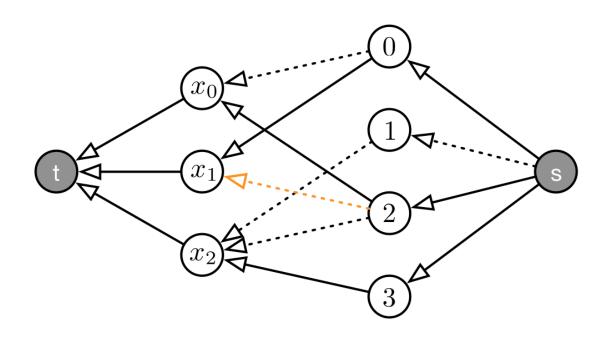
- There is no need to actually build the residual graph
- We can work with the original graph by adjusting the formulas
- Showing residual graph is makes the presentation easier

And what about the filtering?



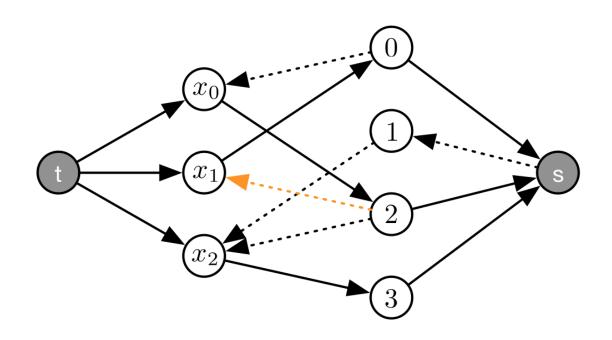
- Value-variable arcs = assignments
- Solid arcs in our final flow = feasible assignments
- Obviously, we cannot prune them

What about the value-variable arcs with no flow?



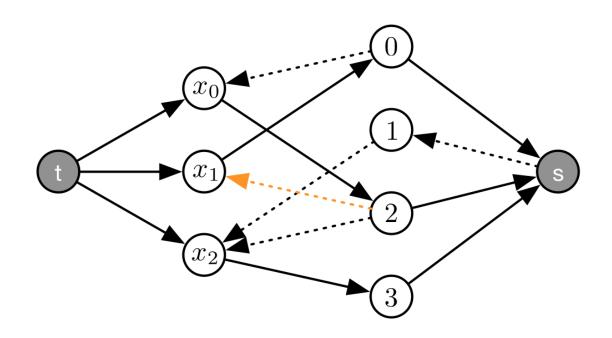
Consider for example arc 2 → x₁

- The corresponding value-variable value is feasible...
- ...iff we manage to route some flow through the arc



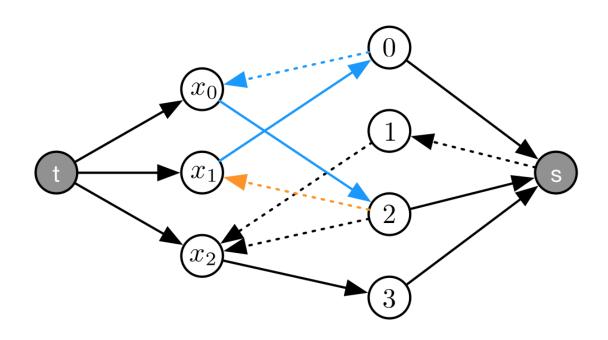
Flow routing takes place on the residual graph

- We need to route flow through $2 \rightarrow x_1$
- But the total flow value must stay the same

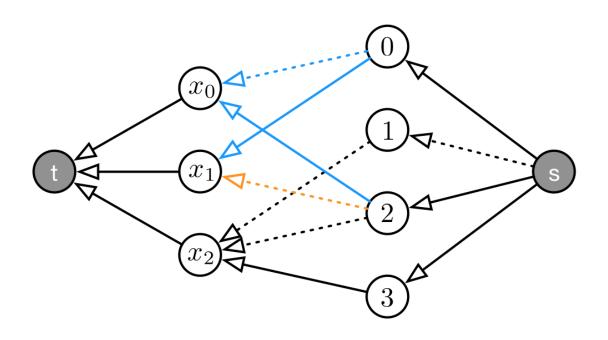


Hence, we are looking for a cycle on the residual graph!

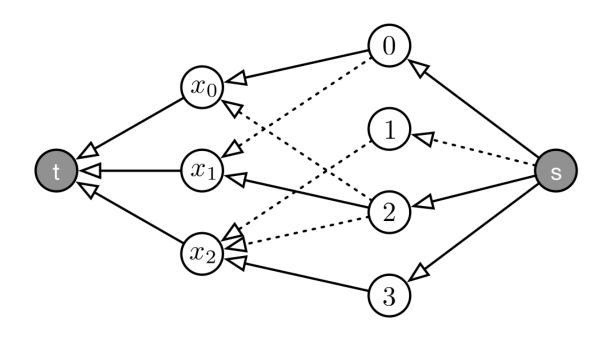
- The cycle should contain arc $\mathbf{2} \rightarrow \mathbf{x}_1$
- Therefore, we just need to look for a path from x_1 to 2



For example this one

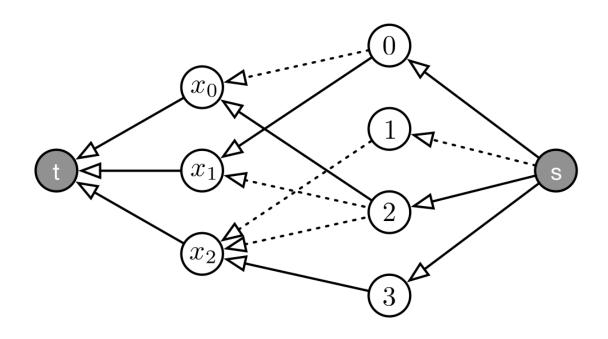


This is how it looks on the original graph



And this is what would happen by routing flow along the cycle

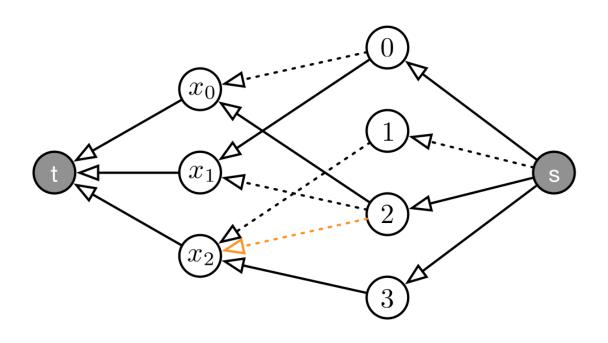
- We get another feasible flow with value equal to | x |
- Hence, we get another feasible solution



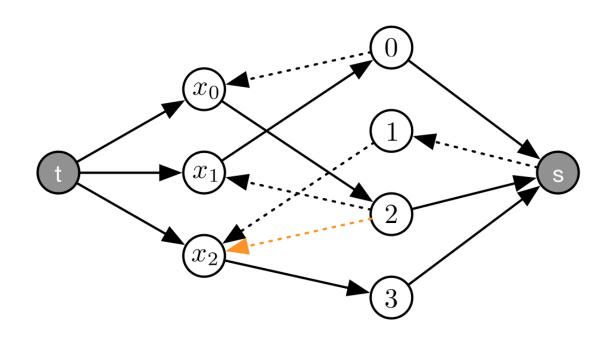
In practice, there is no need to route flow along the cycle

It is sufficient to check if a cycle exists

Let's check another value-variable pair...

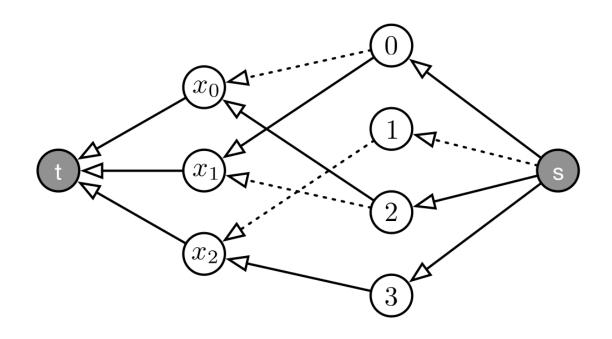


For example, let us check arc 2 → x₂



For example, let us check arc 2 → x₂

- We look for a cycle containing $2 \rightarrow x_2$ in the residual graph
- And none can be found



Therefore, there is no way we can route flow through 2 → x₂

- We can remove arc $2 \rightarrow x_2$ from the original graph
- And prune value 2 from the domain of x₂

We can prune a value v from the domain of x_i iff:

- We have $f(v \rightarrow x_i) = 0$
- lacktriangle and there is no cycle containing $\mathbf{v} \rightarrow \mathbf{x_i}$ in the residual graph

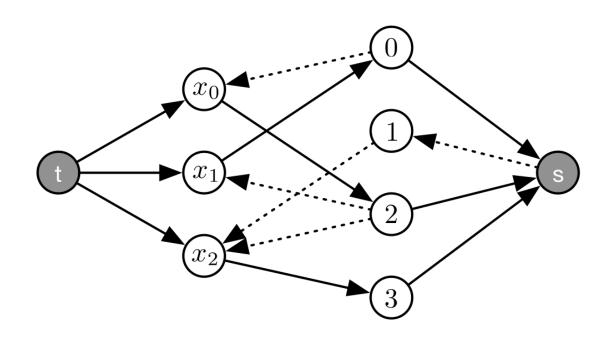
An important note:

- The residual graph contains either $v \rightarrow x_i$ or $x_i \rightarrow v$
- Never both

Hence, we can simplify the second condition:

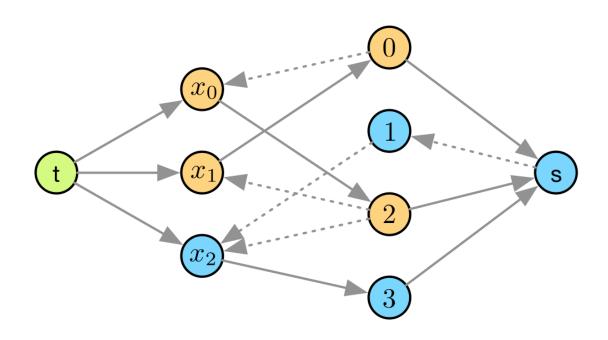
 \blacksquare "and there is no cycle containing v and $\mathbf{x_i}$ in the residual graph"

I.e. iff v and x_i are in different strongly connected components



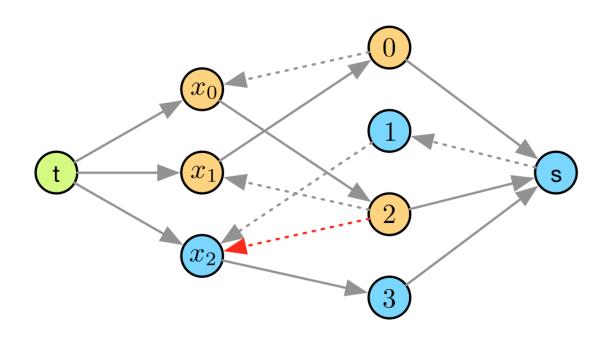
Strongly Connected Component:

- A set of nodes
- Each node can be reached from any other node of the component
- True iff all pairs of nodes appear in a cycle



Here are the SCC of our residual graph (before filtering)

- They can be found efficiently with an algorithm by Tarjan
- The complexity is $o\left(\mid x \mid + \sum_{x_i \in X} \mid D(x_i) \mid \right)$



We can speed-up filtering by using SCC

- We can prune every arc $v \rightarrow x_i$ with $f(v \rightarrow x_i) = 0$
- \blacksquare Provider that \mathbf{v} and $\mathbf{x_i}$ are in different SCC

Global Constraints: a First Wrap-Up

ALLDIFFERENT is our first example of global constraint:

A global constraint is a constraint that corresponds to a set of constraints

Global constraints are very important in CP

- They are more expressive (easier to state)
- They may allow for more powerful or more efficient propagation

Global constraints will be the focus of the next few blocks of slides

Constraint Systems

Global Constraints - GCC

A Simple Shift Scheduling Problem

A small shop makes use of shift work

- There are three types of shifts: full-day, half-day, night
- The work week consists of 4 days

Each employee should perform:

A single night shift, at least a half-day shift, at most a full-day shift

Moreover:

- Night shifts cannot be performed on the first day
- Full-day shifts cannot be performed on the last day
- Half-day shifts can be performed only on the first and the last day

A Simple Shift Scheduling Problem

Let's try to model the shift assignment for a single employee:

- We identify shifts using numbers (full-day = 0, half-day=1, night=2)
- We use a variable for each day (i.e. $x = \{x_0, x_1, x_2, x_3\}$)

We can encode the allowed types of shift in the domains:

$$x_0 \in \{0, 1\}, x_1 \in \{0, 2\}, x_2 \in \{0, 2\}, x_3 \in \{1, 2\}$$

And the other restrictions?

- Not an alldifferent
- We can model them with meta-constraints...

A Simple Shift Scheduling Problem

"Each employee should work a single night shift"

$$\sum_{x_{i} \in X} (x_{i} = 2) = 1$$

"Each employee should work at least a half-day shift"

$$\sum_{\mathbf{x_i} \in \mathbf{X}} (\mathbf{x_i} = 1) \ge 1$$

"Each employee should work at most a full-day shift"

$$\sum_{x_{i} \in X} (x_{i} = 0) \le 1$$

A Simple Shift Scheduling Problem

This approach is correct, but has poor propagation

$$(x_0 = 2) + (x_1 = 2) + (x_2 = 2) + (x_3 = 2) = 1$$
 $(x_0 = 1) + (x_1 = 1) + (x_2 = 1) + (x_3 = 1) \ge 1$
 $(x_0 = 0) + (x_1 = 0) + (x_2 = 0) + (x_3 = 0) \le 1$
 $x_0 \in \{0, 1\}, x_1 \in \{0, 2\}, x_2 \in \{0, 2\}, x_3 \in \{1, 2\}$

A Simple Shift Scheduling Problem

This approach is correct, but has poor propagation

$$\{0\} + (x_1 = 2) + (x_2 = 2) + (x_3 = 2) = 1$$

$$(x_0 = 1) + \{0\} + \{0\} + (x_3 = 1) \ge 1$$

$$(x_0 = 0) + (x_1 = 0) + (x_2 = 0) + \{0\} \le 1$$

$$x_0 \in \{0, 1\}, x_1 \in \{0, 2\}, x_2 \in \{0, 2\}, x_3 \in \{1, 2\}$$

- By filtering on the $(x_i = v)$ constraints we get this
- At this point, we are stuck

No filtering can be done based on the sums

A Simple Shift Scheduling Problem

This approach is correct, but has poor propagation

$$\{0\} + (x_1 = 2) + (x_2 = 2) + (x_3 = 2) = 1$$

$$(x_0 = 1) + \{0\} + \{0\} + (x_3 = 1) \ge 1$$

$$(x_0 = 0) + (x_1 = 0) + (x_2 = 0) + \{0\} \le 1$$

$$x_0 \in \{0, 1\}, x_1 \in \{0, 2\}, x_2 \in \{0, 2\}, x_3 \in \{1, 2\}$$

By reasoning globally, however, we can deduce that:

- Values o and cannot be assigned more than once
- Therefore value 1 must be assigned twice
- Hence $x_0 = 1$, $x_3 = 1$

We can try embed this reasoning inside a global constraint

The Global Cardinality Constraint

How shall we define it? In our example, we are interested in:

- Counting the occurrences (i.e. cardinality) of specific values
- Restricting the maximum/minimum cardinality

So, we could define a Global Cardinality Constraint:

GCC(X, V, L, U), where:

- x is a vector of variables x_i
- v is a vector of values v_j
- L is a vector of cardinality lower bounds 1; for v;
- $lackbreak {f u}$ is a vector of cardinality upper bounds ${f u}_{f j}$ for ${f v}_{f j}$

The Global Cardinality Constraint

The Global Cardinality Constraint is very important in practice:

- Restriction on cardinalities appear in many models
 - Shift-scheduling
 - Timetabling problems
 - Sport and tournament scheduling
 - Capacity constraints (for identical demands)
 - ...
- Even alldifferent(x) could be encoded as GCC(x, v, [0..0], [1..1])
 - Although it is more efficient to use alldifferent when possible

A Propagator for GCC

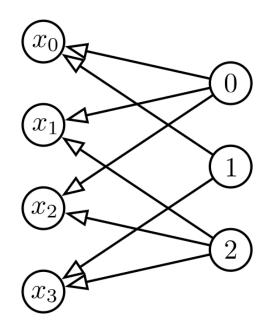
How do we perform filtering for GCC?

Main idea: exploit the similarity with the **ALLDIFFERENT**

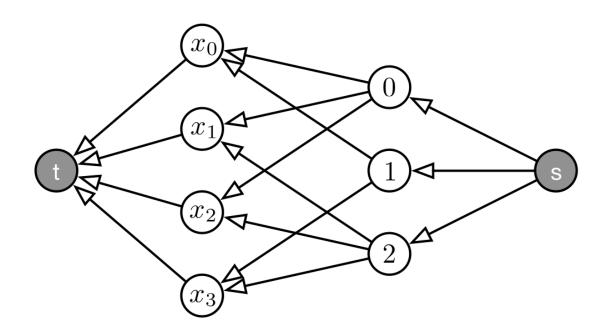
- We will write a consistency checker based on network flows
 - Same flow interpretation as in the ALLDIFFERENT
- And then we will define flow-based filtering rules

Actually, our **ALLDIFFERENT** propagator was originally designed for **GCC**!

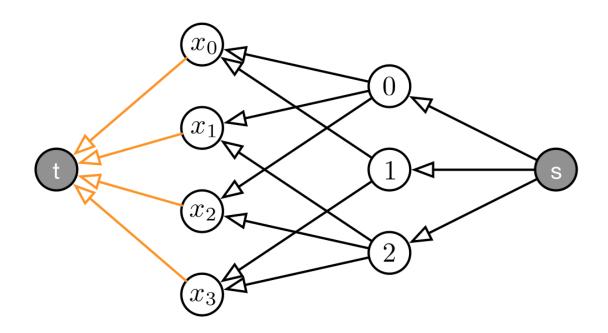
Once again we start from the value graph...



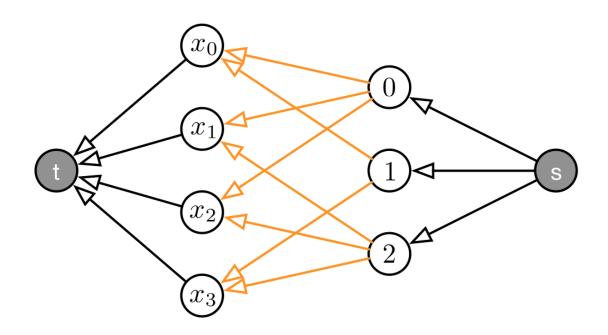
■ This is the value graph for our example **gcc** instance



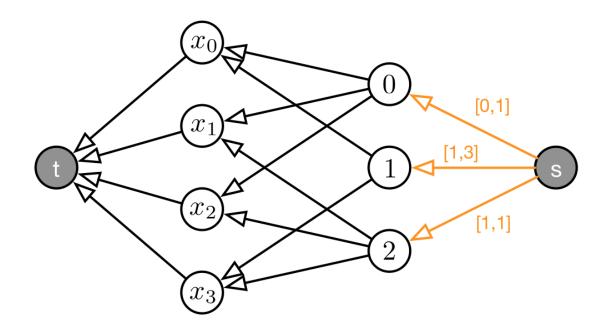
- This is the value graph for our example **gcc** instance
- We add a source **s** and sink **t** node, as for **ALLDIFFERENT**



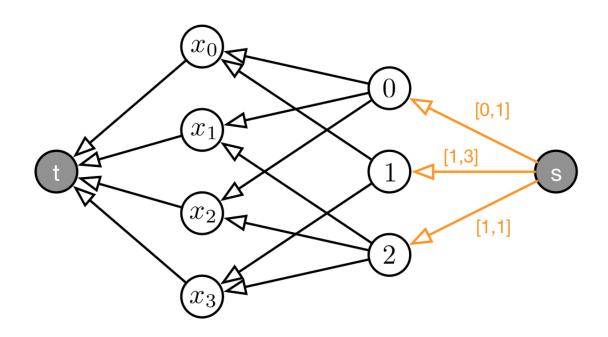
- These arcs have capacity 1, as for the **ALLDIFFERENT**
 - I.e. each variable cannot be assigned more than once



- These arcs have capacity 1, as for the **ALLDIFFERENT**
 - I.e. each variable cannot be assigned more than once
- There arcs have capacity 1, as for the **ALLDIFFERENT**
 - I.e. each value cannot be assigned twice to the same variable

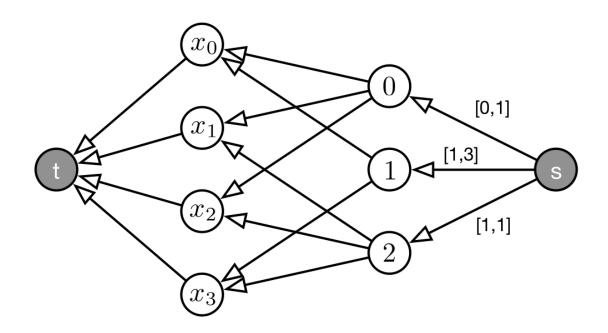


- But these arcs have a <u>capacity</u> equal to u_i...
 - lacktriangle I.e. they cannot be used more than lacktriangle times
- lacktriangle ...and they have a $\underline{\mathsf{demand}}$ equal to $\mathbf{L_i}$
 - lacksquare I.e. they must be used at least $lackbr{L}_i$ times



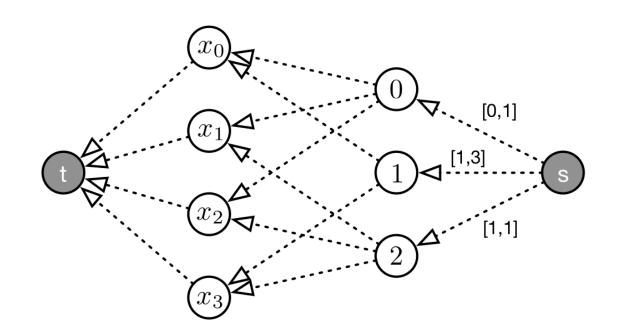
Notation:

- Label [Li, Ui] to show the demand and capacity
- Demand = 0 and capacity = 1 for unlabeled arcs



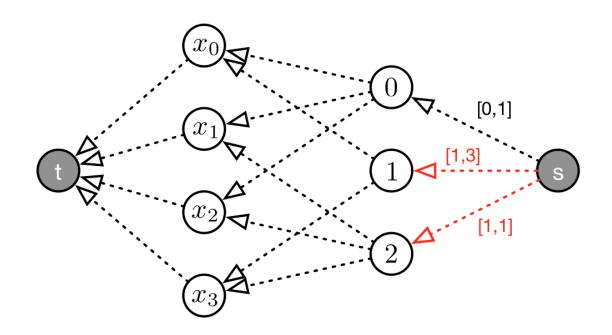
The constraint is feasible iff we can find a flow such that:

- There is flow on all $x_i \rightarrow t$ arcs (i.e the max flow value is |x|)
- The capacity and demand constraints on all arcs are satisfied



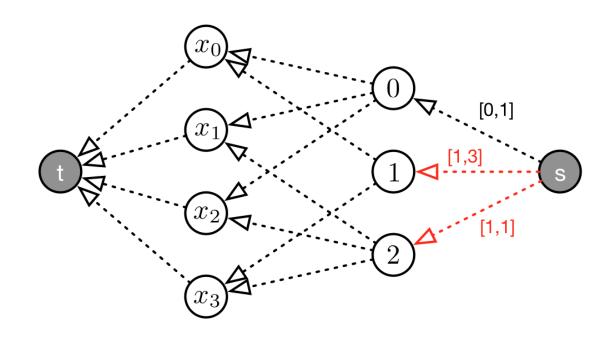
Like in the ALLDIFFERENT case we start from a zero flow

■ However, with the gcc the zero flow may be infeasible



■ In our example, the demand on $s \rightarrow 1$ and $s \rightarrow 2$ are not satisfied

Hence, we need to fix the flow before starting to maximize



Main idea for fixing the flow:

- Treat the value nodes (i.e. 0, 1, 2) as source nodes
- Route 1_i flow units from these nodes to the sink

Residual Graph for the GCC

Routing flow is done on the residual graph

The residual graph for the GCC flow network:

- Contains a node for each node in the original graph
- Contains an arc a → b in two cases

Case 1 (forward arcs):

- The original graph contains an arc $a \rightarrow b$ with capacity c
- We have that $c f(a \rightarrow b) > 0$

Intuitively: it possible to route more flow along $a \rightarrow b$

The residual graph arc has capacity c - f(a → b)

Residual Graph for the GCC

Routing flow is done on the residual graph

The residual graph for the GCC flow network:

- Contains a node for each node in the original graph
- Contains an arc a → b in two cases

Case 2 (backward arcs):

- The original graph contains an arc b → a with demand d
- We have that $f(b \rightarrow a) d > 0$

Intuitively: it is possible to reduce the flow along $b \rightarrow a$

The residual graph arc has capacity f(b → a) - d

Residual Graph for the GCC

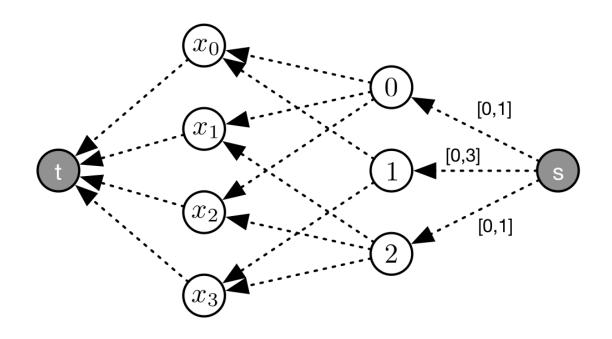
Routing flow is done on the residual graph

The residual graph for the GCC flow network:

- Contains a node for each node in the original graph
- Contains an arc a → b in two cases (see previous slides)

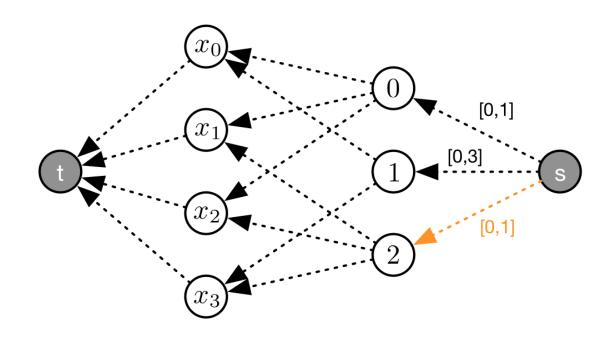
Side effect: there can be no arc with demand in the residual graph

- This is the general definition of residual graph for flow problems
- The **ALLDIFFERENT** was a special case

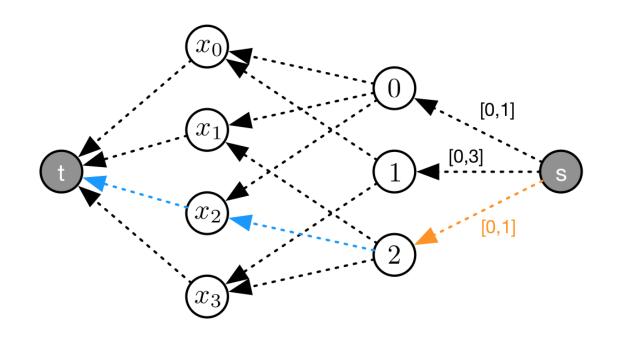


This the residual graph for the zero flow

There are only forward arcs at this stage

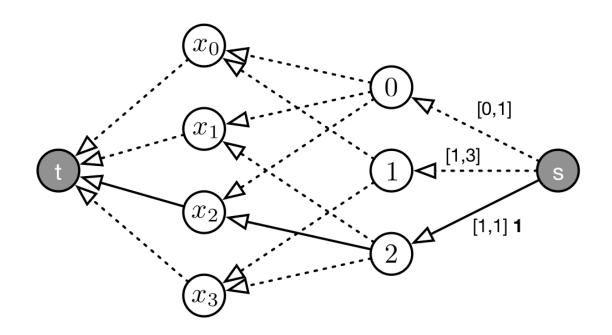


The demand on arc s → 2 in the original graph is 1

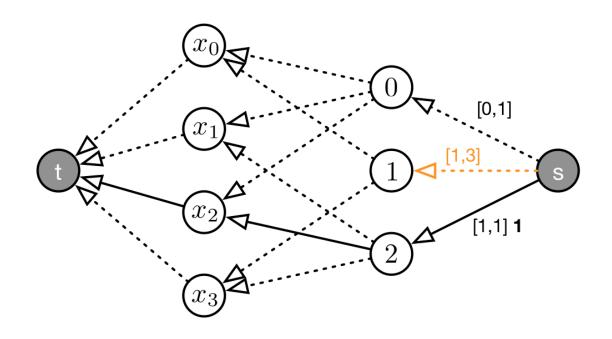


The demand on arc s → 2 in the original graph is 1

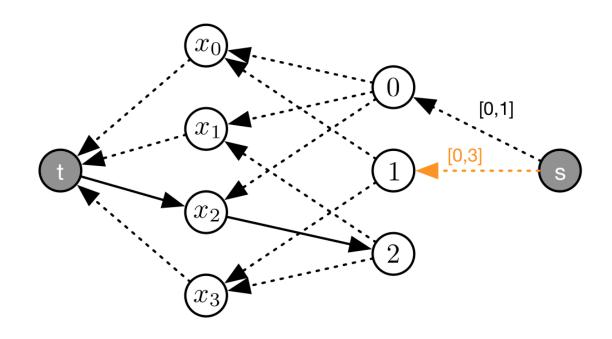
- We search for a shortest path from 2 to t (e.g. Dijkstra's algorithm)
- Flow to route = min capacity of all arcs on the path
- For the gcc graph, this value is always 1



This is the resulting flow status on the original graph

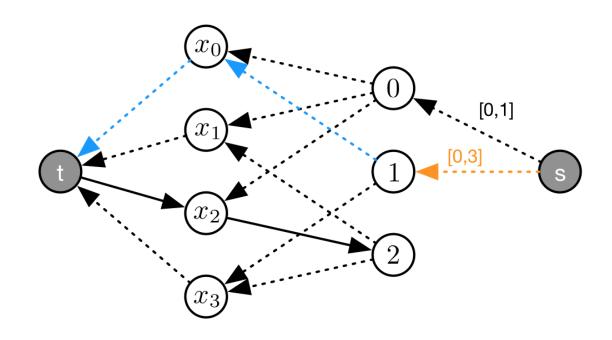


Next, we try to satisfy the demand on arc s → 1



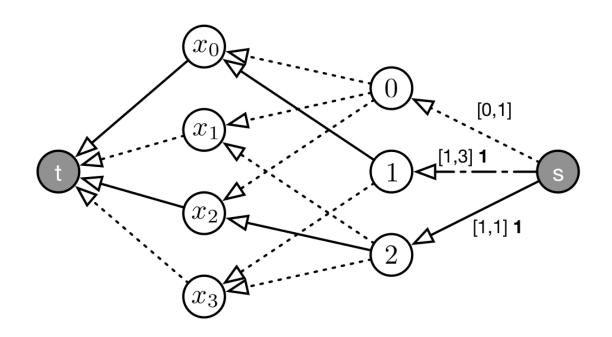
Next, we try to satisfy the demand on arc $s \rightarrow 1$

- The residual graph contains some backward arcs
- As expected no arc has a demand value



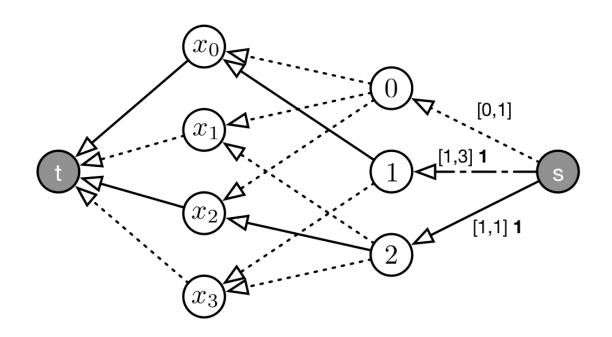
Next, we try to satisfy the demand on arc s → 1

- We search for a path from 1 to t
- We route 1 unit of flow



And we obtain the following flow on the original graph

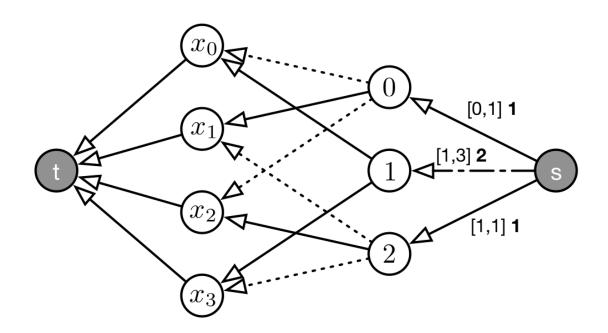
- Dotted arcs = zero flow
- Solid arcs = saturated arcs
- Dash-dotted arcs = non-saturated arcs with non-zero flow



The flow is feasible

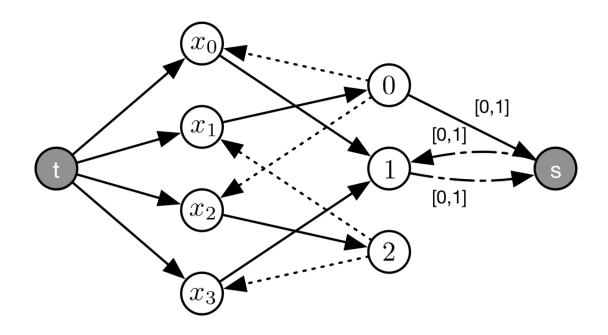
If the demands cannot be satisfied, then no feasible solution exists

We can now maximize the flow by routing flow on s - t paths

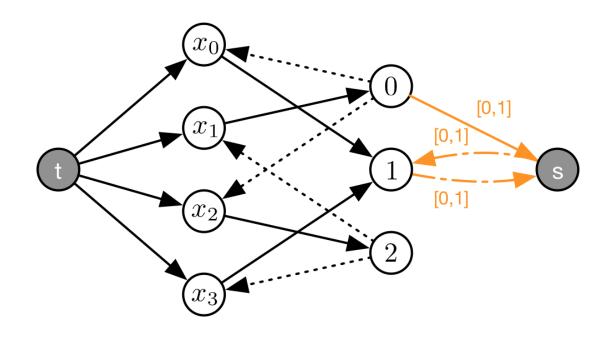


This is the flow at the end of the maximization process

- The corresponding solution is $x_0 = 1$, $x_1 = 0$, $x_2 = 2$, $x_3 = 1$
- lacktriangle If the max flow value is lower than $|\mathbf{x}|$, the constraint is infeasible

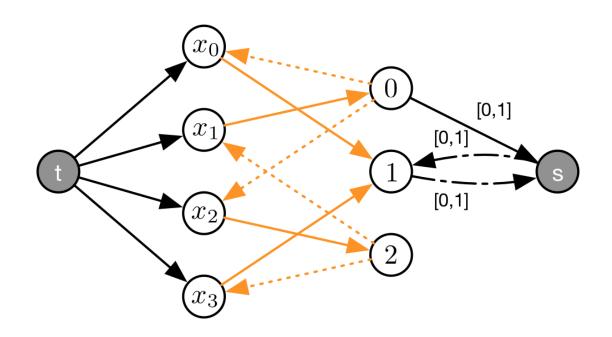


Filtering can be performed by reasoning on the residual graph



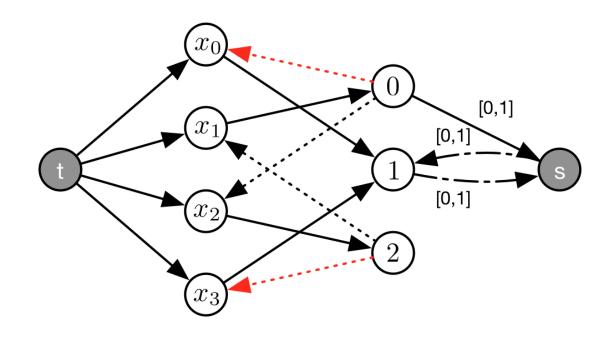
Filtering can be performed by reasoning on the residual graph

Notice the forward and backward arcs between 1 and s



Filtering can be performed by reasoning on the residual graph

- The value-variable arcs are identical to those in the ALLDIFFERENT
- Hence, we can filter based on (lack of) cycles
- And use strongly connected components to speed up the process



In our case, no cycle including $0 \rightarrow x_0$ and $2 \rightarrow x_3$ exists

■ Hence, we can prune value $\mathbf{0}$ from $\mathbf{D}(\mathbf{x}_0)$, and $\mathbf{2}$ from $\mathbf{D}(\mathbf{x}_3)$

The DISTRIBUTE Constraint

In solvers the gcc is sometimes called DISTRIBUTE

Actually, **DISTRIBUTE** is a more general constraint, with signature:

DISTRIBUTE(X, V, N)

- x is a vector of variables x_i
- v is a vector of values v_j
- N is a vector of cardinality variables n;

The DISTRIBUTE Constraint

In solvers the GCC is sometimes called DISTRIBUTE

Actually, **DISTRIBUTE** is a more general constraint, with signature:

DISTRIBUTE(X, V, N)

Two important differences w.r.t. our definition:

- The cardinality bounds are specified via D(n_j)
- The employed propagator can filter the n; variables

Which means that we can use **DISTRIBUTE** for counting!

Other Constraints in the Same Family

Many solver provide other similar constraints

If we simply need to count the occurrences of a value, we have:

COUNT(X, V, C)

Where:

- x is a vector of integer variables
- v is an integer value
- c is either an integer or a variable

The constraint is satisfied if value v is taken c times in x

Other Constraints in the Same Family

Many solver provide other similar constraints

If we need to limit the occurrences of a single value, we have:

ATMOST(X, V, C)

Where:

- x is a vector of integer variables
- v is an integer value
- c is an integer

The constraint is satisfied if value v is taken less than c times in x

■ The case with c variable is subsumed by **count(x, v, c)**

Other Constraints in the Same Family

Many solver provide other similar constraints

If all values must be different, except for a special one, we have:

ALLDIFFERENTEXCEPT(X, V)

Where:

- x is a vector of integer variables
- v is an integer value

All value can be taken at most once, except for v

Useful to model empty bins or empty slots