

We have to select warehouses for serving customers

We have to select warehouses for serving customers

- There are N warehouses and M customers
- Each customer i should be served by a single warehouse
- Each customer i has a demand d_i
- **Each** warehouse j has a limited capacity c_i
- There is a travel cost $t_{i,j}$ for serving customer i from warehouse j

Goal: find the assignment that minimizes the cost

How do we model the problem?

How do we model the problem?

A first alternative

- $x_i \in \{0..n-1\}, \forall i = 0..m-1$
- Index = customer
- Value = warehouse

How does it fare with the constraints?

"Each customer *i* should be served by a single warehouse"

"Each customer i should be served by a single warehouse"

Trivial

"Each warehouse j has a limited capacity c_i "

"Each customer i should be served by a single warehouse"

Trivial

"Each warehouse j has a limited capacity c_i "

- lacktriangle Assigning customer i to warehouse j consumes some capacity
- Not easy to model with out current tools!

We can tackle the problem by changing the representation...

Second alternative: "inverted" approach

We can tackle the problem by changing the representation...

Second alternative: "inverted" approach

- Index = warehouse, value = customer
- Not so easy!
- One warehouse can serve multiple customers

We can tackle the problem by changing the representation...

Third alternative: binary model

- One variable for each possible assignment
- $x_{i,j} \in \{0,1\}, \quad \forall i = 0..m-1, j = 0..n-1$

The typical modeling approach in Integer Linear Programming

How does it fare with the constraints?

"Each customer i should be served by a single warehouse"

$$\sum_{j=0..n-1} x_{i,j} = 1, \quad \forall i = 0..m - 1$$

"Each warehouse j has a limited capacity c_i "

$$\sum_{i=0..m-1} d_i x_{i,j} \le c_j, \quad \forall j = 0..n-1$$

There is a travel cost $t_{i,j}$ for serving customer i from warehouse j

$$\min f(x) = \sum_{j=0..n-1} \sum_{i=0..m-1} t_{i,j} x_{i,j}$$

Binary Model: PROs and CONs

We managed to model the problem! But:

Binary Model: PROs and CONs

We managed to model the problem! But:

- It's not compact
- Constraint propagation may be weak

Is there another alternative?

Binary Model: PROs and CONs

We manage to model the problem! But:

- It's not compact
- Constraint propagation may be weak

Is there another alternative?

- Yes, we can extend our modeling tools
- HP: let's use our classical $x_i \in \{0..n-1\}$ variables
- We need the ability to:
 - Take into account a demand d_i for warehouse j if $x_i = j$
 - Take into account a cost $t_{i,j}$ for warehouse j if $x_i = j$

Constraints as Expressions

We could achieve both goals by treating constraints as expressions:

$$z = (x_i = j)$$

Intuitively:

- z = 1 iff the constraint $x_i = j$ is satisfied
- z = 0 iff the constraint is not satisfied

This is actually possible in most constraint solvers

A <u>reified constraint</u> is an expression that corresponds to the feasibility state of a constraint

Our notation:

- A constraint that appears as a term in an expression is reified
- A constraint (c) between brackets is reified

A meta-constraint is a constraint over reified constraints

A <u>reified constraint</u> is an expression that corresponds to the feasibility state of a constraint

Example: warehouse capacity as a meta-constraint:

$$\sum_{i=0..m-1} d_i (x_i = j) \le c_j, \quad \forall j = 0..n-1$$

A <u>reified constraint</u> is an expression that corresponds to the feasibility state of a constraint

Example: assignment costs using reified constraints:

$$\min f(x) = \sum_{j=0..n-1} \sum_{i=0..m-1} t_{i,j} (x_i = j)$$

Essentially:

- We gain the power to "materialize" binary variables...
- ...whenever they are needed

A <u>reified constraint</u> is an expression that corresponds to the feasibility state of a constraint

How does it work in practice?

- We need to define a notion of consistency
- We need a filtering algorithm

Consistency for Reified Constraints

GAC for reified constraints:

The (original) domain D(c) of a reified constraint is always $\{0, 1\}$

- value 1 in D(c) has a support iff c can be feasible
- value 0 in D(c) has a support iff c can be infeasible

Consistency for Reified Constraints

GAC for reified constraints:

The (original) domain D(c) of a reified constraint is always $\{0, 1\}$

- value 1 in D(c) has a support iff c can be feasible
- value 0 in D(c) has a support iff c can be infeasible

Examples:

Consider the constraint $x \leq y$:

- $x \in \{0, 1\}, y \in \{0, 1\} \longrightarrow D(x \le y) = \{0, 1\}$
- $x \in \{1\}, y \in \{0\} \longrightarrow D(x \le y) = \{0\}$
- $x \in \{0, 1\}, y \in \{1\} \longrightarrow D(x \le y) = \{1\}$

Filtering for Reified Constraints

Filtering Rules

Let (c) be the reification of constraint c. Start by filtering c. Then:

- If we have a domain wipeout $\longrightarrow 1 \notin D(c)$
- If c is resolved $\longrightarrow 0 \notin D(c)$

Resolved constraint: A constraint is resolved iff

$$c_j = \prod_{x_i \in X(c_j)} D(x_i)$$

i.e. if all the possible assignments are feasible.

Filtering for Reified Constraints

Filtering Rules

Let (c) be the reification of constraint c. Start by filtering c. Then:

- If we have a domain wipeout $\longrightarrow 1 \notin D(c)$
- If c is resolved $\longrightarrow 0 \notin D(c)$

Some comments:

The first rule is simple to implement

Filtering for Reified Constraints

Filtering Rules

Let (c) be the reification of constraint c. Start by filtering c. Then:

- If we have a domain wipeout $\longrightarrow 1 \notin D(c)$
- If c is resolved $\longrightarrow 0 \notin D(c)$

Some comments:

For the second, we need to check whether c is resolved:

- If we can, then GAC is enforced on (c)
- Otherwise, we have a weaker form of consistency
- ullet Worst case: check feasibility c once all variables are bound

In practice, the approach is typically used for $=, \neq, <, \leq, >, \geq$

A Final Word on Meta-constraints

Meta-constraints are extremely powerful modeling tools

However, they are not always the best choice:

- They may lead to complicated models
- They may lead to larger models (hence, more filtering time)
- They may lead to weak filtering (same as binary vars.)

And the last point deserves some discussion...

A Final Word on Meta-constraints

Consider the following expression:

$$2(x = 0) + 3(x = 1)$$

With $x \in \{0, 1\}$

A Final Word on Meta-constraints

Consider the following expression:

$$2(x = 0) + 3(x = 1)$$

With $x \in \{0, 1\}$

- We have: $D(x = 0) = D(x = 1) = \{0, 1\}$
- Via propagation, we deduce that:

$$lb = 2 \times 0 + 3 \times 0 = 0$$

$$ub = 2 \times 1 + 3 \times 1 = 5$$

• i.e. the bounds are 0 and 5

But the true bounds are 2 and 3

In a few chapters we will see how to address this

Constraint Systems

Logical Constraints

An Example Problem (courtesy of Ines Lynce)

We need to schedule a meeting:

- John is available on Monday, Wednesday, or Thursday
- Catherine is not available on Wednesday
- Anne is not available on Friday
- Peter is not available neither on Tuesday nor on Thursday

When can the meeting take place?

We can use a logic-based approach...

An Example Problem (courtesy of Ines Lynce)

We need to schedule a meeting:

- John is available on Monday, Wednesday, or Thursday
- Catherine is not available on Wednesday
- Anne is not available on Friday
- Peter is not available neither on Tuesday nor on Thursday

When can the meeting take place?

- Binary variables $M, Tu, W, Th, Fr \in \{0, 1\}$
- A single constraint:

$$(M \lor W \lor Th) \land (\neg W) \land (\neg F) \land (\neg Tu \land \neg Th) = 1$$

An Example Problem (courtesy of Ines Lynce)

We need to schedule a meeting:

- John is available on Monday, Wednesday, or Thursday
- Catherine is not available on Wednesday
- Anne is not available on Friday
- Peter is not available neither on Tuesday nor on Thursday

When can the meeting take place?

The only solution is M = 1, Tu, W, Th, F = 0

Boolean Satisfiability Problem (SAT)

Our problem is an instance of the:

Boolean Satisfiability Problem:

determine if a boolean clause is satisfiable

It's a special type of CSP:

- Only logical variables (i.e. $\in \{0, 1\}$)
- A single constraint, in the form "logical expression = 1"

Boolean Satisfiability Problem (SAT)

- The SAT problem is simple, but very important
- Many practical applications (mostly in HW/SW verification)
- Dedicated, very efficient solvers

But we can solve a SAT instance in CP, too

Do we have all tools we need?

Boolean Satisfiability Problem (SAT)

- The SAT problem is simple, but very important
- Many practical applications (mostly in HW/SW verification)
- Dedicated, very efficient solvers

But we can solve a SAT instance in CP, too

Do we have all tools we need?

Remember a SAT instance is in the form:

logical expression = 1

We need support for logical expressions/constraints

Logical Expressions/Constraints

All logical expressions can be obtained starting from three operators:

$$\land, \lor, \lnot$$

Other operators are not strictly necessary, but useful in practice:

$$\Rightarrow$$
, \Leftrightarrow , \bigoplus (xor)

So, those are the constraints that we should add

Logical Expressions/Constraints

All logical expressions can be obtained starting from three operators:

$$\land, \lor, \lnot$$

Other operators are not strictly necessary, but useful in practice:

$$\Rightarrow$$
, \Leftrightarrow , \bigoplus (xor)

So, those are the constraints that we should add

- But we won't!
- Instead, we will "cheat"...

Let's consider a "Not" constraint:

$$z = \neg x$$

Let's consider a "Not" constraint:

$$z = \neg x$$

And the following expression/constraint over binary variables:

$$z = (1 - x)$$

Let's consider a "Not" constraint:

$$z = \neg x$$

And the following expression/constraint over binary variables:

$$z = (1 - x)$$

They have the same semantic

- z = 1 iff x = 0
- z = 0 iff x = 1

Let's consider a "Not" constraint:

$$z = \neg x$$

And the following expression/constraint over binary variables:

$$z = (1 - x)$$

And we get GAC filtering!

- $0 \in D(z)$ has a support iff $1 \in D(x)$
- $1 \in D(z)$ has a support iff $0 \in D(x)$

The filtering rules for x are analogous

Arithmetic Equivalent Expressions

Take-home message:

- The constraint $z = \neg x$ is not necessary
- We can post instead z = (1 x)

The two are totally equivalent (for binary variables)

- This is what I meant for "cheating"...
- ...Using arithmetic expressions to mimic logical expressions

Let's see if it works with other logical expressions...

"And" Constraints

Let's consider an "and" constraint:

$$z = x \wedge y$$

"And" Constraints

Let's consider an "and" constraint:

$$z = x \wedge y$$

And the arithmetic expression (over binary variables):

$$z = x y$$

- Same semantic? Yep
- GAC filtering? Yep

So, we can use the product to model the "and" operator

Alternative: use $z = \min(x, y)$

"Or" Constraints

Let's consider an "or" constraint:

$$z = x \vee y$$

"Or" Constraints

Let's consider an "or" constraint:

$$z = x \vee y$$

And the arithmetic expression (over binary variables):

$$z = \max(x, y)$$

- Same semantic? Yep
- GAC filtering? Yep

So, we can use max to model the "or" operator

Arithmetic Equivalent Expressions

So, we have an arithmetic equivalent for all basic operators

We can get the other logical operators by combining the basic ones:

- $x \Rightarrow y$ is equivalent to $\neg x \lor y$
- $x \Leftrightarrow y$ is equivalent to $(x \land y) \lor (\neg x \land \neg y)$
- $x \oplus y$ is equivalent to $(\neg x \land y) \lor (x \land \neg y)$

It's bit verbose, though. E.g.:

• $x \Leftrightarrow y \text{ becomes } \max(x y, (1-x)(1-y))$

Can we find a more compact formulation?

"Implication" Expression/Constraint

Let's consider an "implication" constraint:

$$z = (x \Rightarrow y)$$

"Implication" Expression/Constraint

Let's consider an "implication" constraint:

$$z = (x \Rightarrow y)$$

And the expression (over binary variables):

$$z = (x \le y)$$

It's a meta constraint!

- Same semantic? Yep
- GAC filtering? Yep

So, we can use the reified "≤" constraint to model the "⇒" operator

Reified Constraints in Action: Equivalence

Let's consider the equivalence constraint:

$$z = (x \Leftrightarrow y)$$

Reified Constraints in Action: Equivalence

Let's consider the equivalence constraint:

$$z = (x \Leftrightarrow y)$$

And consider the meta-constraint (over binary variables):

$$z = (x = y)$$

- Same semantic? Yep
- GAC filtering? Yep

So, we can use the reified "=" constraint to model the "⇔" operator

Reified Constraints in Action: Xor

Let's consider the exclusive-or constraint:

$$z = (x \oplus y)$$

Reified Constraints in Action: Xor

Let's consider the exclusive-or constraint:

$$z = (x \oplus y)$$

And consider the meta-constraint (over binary variables):

$$z = (x \neq y)$$

- Same semantic? Yep
- GAC filtering? Yep

So, we can use the reified "≠" constraint to model the "⊕" operator

Meta-constraints and Logical Constraints

- We have used reified constraints to encode \Rightarrow , \Leftrightarrow , \oplus
- But we can also combine reified constraints with \Rightarrow , \Leftrightarrow , \oplus !

Reified constraints shine when used in logical expressions

Meta-constraints and Logical Constraints

Some examples:

"If x = 1, then y must be positive"

$$(x = 1) \le (y > 0)$$

"x and y are either both non-negative or both negative"

$$(x \ge 0) = (y \ge 0)$$

"Variable x is either less then -1 or greater than 1"

$$(x < -1) \neq (x > 1)$$

Meta-constraints and Logical Constraints

By combining reified and logical constraints we can model literally every combinatorial relation

Although this is not necessarily a good idea:

- The usual caveats: complicated and large models
- And weak filtering, of course

And the last point deserves (again) some discussion...

A Final Word on Meta-Constraints

A meta-constraint is in fact a network of constraints:

- The meta-constraint can be non-GAC
- Even if all the individual constraints are GAC

A Final Word on Meta-Constraints

A meta-constraint is in fact a network of constraints:

- The meta-constraint can be non-GAC
- Even if all the individual constraints are GAC

Classical example:

$$(x = 1) \neq (x = 2)$$
, with $x \in \{0, 1, 2\}$

- \blacksquare x = 1, x = 2 and $(x = 1) \neq (x = 2)$ are GAC with domain $\{0, 1\}$
- But x = 0 is not feasible

A Modeling Exercise

Let's consider a simple production scheduling problem:

- We have a single production line that must process a set O of orders
- Processing an order takes one unit of time (e.g. one day)
- Processing an order consume all our resources for that time unit
- There are precedence constraints i < j between some orders
 - The precedences are stored as pairs in a set P
- Each order i has a deadline d_i
- We get a revenue r_i if an order is processed by the deadline
 - For the remaining orders, we do not get anything

Our goal is maximize the revenue

Which variables? Start times!

$$s_i \in \{0..eoh\}$$

With eoh = |O|

How do we model the resources?

$$s_i \neq s_j \quad \forall i, j \in O, i < j$$

How do we model the precedences?

$$s_i < s_j \quad \forall (i,j) \in P$$

And what about the revenues?

They define our cost function:

$$\max z = \sum_{i \in O} r_i \ (s_i \le d_i)$$

But should consider only the orders processed by the deadline!

And what about the revenues?

They define our cost function:

$$\max z = \sum_{i \in O} r_i \ (s_i \le d_i)$$

But should consider only the orders processed by the deadline!

So, our full model is:

$$\max z = \sum_{i \in O} r_i(s_i \le d_i)$$
subject to: $s_i \ne s_j$ $\forall i, j \in O, i < j$

$$s_i < s_j \qquad \forall (i, j) \in P$$

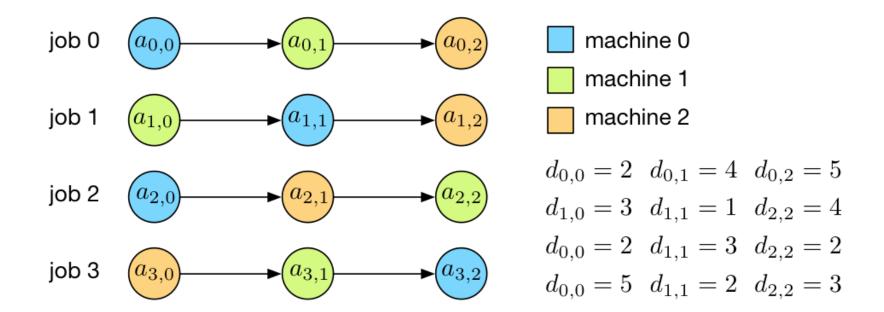
$$s_i \in \{0..eoh\}$$
 $\forall i \in O$

A Modeling Exercise

We need to schedule activities in an industrial workshop.

- Activities are organized in jobs
- \blacksquare A job is a set of m activities, to be performed in sequence
- \blacksquare There are n jobs to be scheduled
- The j-th activity in the i-job is called $a_{i,j}$
- Activity $a_{i,j}$ has non-negative duration $d_{i,j}$
- \blacksquare The workshop has m machines
- Each of the m activities requires a different machine
- In particular, $a_{i,j}$ requires machine $m(a_{i,j})$

Objective: complete all jobs as soon as possible



How do we model the problem?

Which variables? Start times!

Which variables? Start times!

$$s_{i,j} \in \{0..eoh\}, \quad \forall i = 0..n - 1, j = 0..m - 1$$

With
$$eoh = \sum_{\substack{i=0..n-1 \ j=0..m-1}} d_{i,j}$$

Ordering constraints for each job:

$$s_{i,j} + d_{i,j} \le s_{i,j+1} \quad \forall i = 0..n - 1, j = 0..m - 2$$

Cost function: minimize the makespan (maximum end time)

$$\min z = \max_{i=0..n-1} \left(s_{i,m-1} + d_{i,m-1} \right)$$

The tricky part is handling the resources...

- Activities on the same machine cannot run in parallel
- In our old scheduling problem: we used ≠ constraints

Let's parse "cannot run in parallel" for $a_{i,j}$ and $a_{h,k}$

The tricky part is handling the resources...

- Activities on the same machine cannot run in parallel
- Old scheduling problem: we used ≠ constraints

Let's parse "cannot run in parallel" for $a_{i,j}$ and $a_{h,k}$

- Either $a_{i,j}$ ends before $a_{h,k}$ starts
- or $a_{h,k}$ ends before $a_{i,j}$ starts

This can be stated using meta constraints:

$$(s_{i,j} + d_{i,j} \le s_{h,k}) \lor (s_{h,k} + d_{h,k} \le s_{i,j})$$

For all i, j, h, k such that m(i, j) = m(h, k)

So we get a first model for the job-shop scheduling problem:

$$\min z = \max_{i=0..n-1} \left(s_{i,m-1} + d_{i,m-1} \right)$$
subject to: $s_{i,j} + d_{i,j} \le s_{s,j+1}$ $\forall i = 0..n-1, \ j = 0..m-2$

$$(s_{i,j} + d_{i,j} \le s_{h,k}) \lor (s_{h,k} + d_{h,k} \le s_{i,j}) \quad \begin{cases} \forall i, j, h, k : i < h \\ m(i,j) = m(h,k) \end{cases}$$

$$s_{i,j} \in \{0..eoh\}$$
 $\forall i = 0..n-1, \ j = 0..m-1$

Where the v expression will be modeled using a max.

We will return to the JSSP again in the course