NAO

Programming a humanoid robot
Nao at a glance
What can NAO do?

MOVE
- 25 degrees of freedom
- Motors controlled by software
- Complex movement capabilities

SENSE
- 2 HD camera
- 4 microphones
- 2 bumpers
- 2 sonars

INTERACT
- 2 speakers
- multiple LEDs
- tactile sensors
- prensile hands
- infrared sensors
- WiFi connection

THINK
- Intel Atom 1.6 GHz CPU
- 1 Gb RAM
- 8 Gb Flash Memory
- Software suite
What and where?
Why programming in Python
Remot control

STANDARD APPROACH:

1. Import `ALProxy`
   ```python
   from naoqi import ALProxy
   ```

2. Create an `ALProxy` to the module you want to use
   ```python
   tts = ALProxy( "ALTextToSpeech" , "ip_address" , 9559 )
   ```

3. Call a method
   ```python
   tts.say( "Hello everyone! I am happy to work with you!" )
   ```
Remote control

RUNS ON THE COMPUTER
» Sends orders (move, talk, ...)
» Asks for data (image, distance, ...)
Software Suite

Choregraphe
- Graphical Development of Behaviors
- Ergonomic and user-friendly Interface

NAOsim
- Physical Simulation Engine
- Behaviors Simulation and validation

Monitor
- Ergonomic Interface to monitor actuators and sensors data

SDK
- Compilation and debugging tools
- MatLab, Java, Python, C++, .NET, MS Robotics Studio
Choreographe

- It is a graphical interface to program NAO (for Windows, Mac e Linux)
 (downloadable after creating an account on Aldebaran community)

- It is composed by boxes containing some code for specific actions
 - Python code into boxes
 - a box can be made of other boxes
 - a box can have different inputs/outputs
Choreographe - Panels

A Box libraries panel
B Flow diagram panel
C 3D Robot View
Sample Demo
```python
class MyClass(GeneratedClass):
    def __init__(self):
        GeneratedClass._init_(self, False)
        self.motion = ALProxy("ALMotion")
        self.poseErrorThresholdPos = 0.01
        self.poseErrorThresholdAng = 0.03

    def onLoad(self):
        pass

    def onUnload(self):
        self.motion.moveTo(0.0, 0.0, 0.0)

    def onInput_onStart(self):
        import almath
        # The command position estimation will be set to the sensor position
        # when the robot starts moving, so we use sensors first and commands later.
        initPosition = almath.Pose2D(self.motion.getRobotPosition(True))
        targetDistance = almath.Pose2D(self.getParameter("Distance X (m)"),
                                        self.getParameter("Distance Y (m)"),
                                        self.getParameter("distance (deg)") * almath.PI / 180)
        expectedEndPosition = initPosition + targetDistance
        enableArms = self.getParameter("Arms movement enabled")
        self.motion.setMoveArmsEnabled(enableArms, enableArms)
        self.motion.moveTo(self.getPose2DParameter("Distance X (m)"),
                            self.getPose2DParameter("Distance Y (m)"),
                            self.getPose2DParameter("distance (deg)") * almath.PI / 180)
        # The move is finished so output
        realEndPosition = almath.Pose2D(self.motion.getRobotPosition(False))
        positionError = realEndPosition.diff(expectedEndPosition)
        if (abs(positionError.x) < self.poseErrorThresholdPos
            and abs(positionError.y) < self.poseErrorThresholdPos
            and abs(positionError.theta) < self.poseErrorThresholdAng):
            self.onArrivedAtDestination()
        else:
            self.onStoppedBeforeArriving(positionError.toVector())
```
Configuration Box
Speech Recognition

You can enter a list of words to be recognized by voice command to the robot.
1. NAO plays Soccer (**RoboCup**)
2. **Thesis and projects**
 ✓ NAO plays “Guess who”
 ✓ Planning for NAO actions and learning new movements in Timeline
 ✓ NAO navigates in different rooms
 ✓ NAO mathematician
3. **Master Thesis**
 ✓ Neural networks for
 ➤ Face recognition
 ➤ OCR (Optical Character Recognition)
 ✓ User movements imitation using Kinect
Nao plays Soccer

• RoboCup aims to create, by 2050, a team of humanoid robots that can take on and beat the best human players.

• When playing together, the robots must act autonomously and are unable to get help from their handlers.

• They also communicate via wi-fi to co-ordinate teamwork.

• Various technologies have to be developed in AI: the robots know who to pass to and how best to defeat an opponent.
Lucy plays “Guess who”

- Lucy is able to play guess who with a human using voice recognition.

- Once the sentence pronounced is translated into textual form, Lucy is able to understand what was communicated.

Natural Language Processing
Face Recognition

![Diagram of Face Recognition System]
Lucy reads with OCR

4) the robot pronounce the text according to the language installed

1a) `getImageRemote` command is sent to the robot

1b) the image is retrieved from the robot

2) the image is processed by our OCR software

3) the text retrieved is sent to the robot
Presenting our NAO: Lucy

Let Lucy introduce herself!
Thank you!